Imagen de portada de Amazon
Imagen de Amazon.com

Deep learning / Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

Por: Colaborador(es): Tipo de material: TextoTextoIdioma: Español Series Adaptive computation and machine learningDetalles de publicación: Cambridge MIT Press 2016Descripción: xxii, 775 pages : illustrations (some color) ; 24 cmISBN:
  • 978-0-262-03561-3 (hardcover : alk. paper)
  • 0262035618 (hardcover : alk. paper)
Tema(s): Clasificación CDD:
  • 007.52 GOO
Contenidos:
Applied math and machine learning basics. Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- Deep networks: modern practices. Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolutional networks -- Sequence modeling: recurrent and recursive nets -- Practical methodology -- Applications -- Deep learning research. Linear factor models -- Autoencoders -- Representation learning -- Structured probabilistic models for deep learning -- Monte Carlo methods -- Confronting the partition function -- Approximate inference -- Deep generative models.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Signatura topográfica Info Vol Estado Código de barras
LIBRO LIBRO Regional Formosa Biblioteca 007.52 GOO (Navegar estantería(Abre debajo)) Ej. 1 Disponible 61975
Total de reservas: 0

Includes bibliographical references (pages 711-766) and index.

Applied math and machine learning basics. Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- Deep networks: modern practices. Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolutional networks -- Sequence modeling: recurrent and recursive nets -- Practical methodology -- Applications -- Deep learning research. Linear factor models -- Autoencoders -- Representation learning -- Structured probabilistic models for deep learning -- Monte Carlo methods -- Confronting the partition function -- Approximate inference -- Deep generative models.

No hay comentarios en este titulo.

para colocar un comentario.