Deep learning / Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Tipo de material:
- 978-0-262-03561-3 (hardcover : alk. paper)
- 0262035618 (hardcover : alk. paper)
- 007.52 GOO
Tipo de ítem | Biblioteca actual | Signatura topográfica | Info Vol | Estado | Código de barras | |
---|---|---|---|---|---|---|
![]() |
Regional Formosa Biblioteca | 007.52 GOO (Navegar estantería(Abre debajo)) | Ej. 1 | Disponible | 61975 |
Includes bibliographical references (pages 711-766) and index.
Applied math and machine learning basics. Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- Deep networks: modern practices. Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolutional networks -- Sequence modeling: recurrent and recursive nets -- Practical methodology -- Applications -- Deep learning research. Linear factor models -- Autoencoders -- Representation learning -- Structured probabilistic models for deep learning -- Monte Carlo methods -- Confronting the partition function -- Approximate inference -- Deep generative models.
No hay comentarios en este titulo.